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Abstract

We introduce a Generative Adversarial Network (GAN) that can produce images of planet-like
objects. We trained our model with a stretched dataset that is based on images of celestial bodies
of the solar system. Those include 13 planets and dwarf planets and 18 moons. Using a loss
function comprising of the Wasserstein-GAN (WGAN) loss and the Structural Similarity Index
(SSIM), our model managed to build on top of previous works of GAN training in the context of
astronomy. It is able to generate realistic-looking celestial objects with proper textures, sources
of light and rich coloring. Our work results can be accessed via a web app integration.

1 Introduction

Inspired by recent successes of Generative Adversarial Networks (GANs) and our fascination for the
universe, we investigated the potential of GANs for generating imaginative but realistic-looking ce-
lestial bodies. In a web article, Brennan (2022) conrmed the existence of 5,000 exoplanets. These
are planets that lie outside of our solar system. Their existence is documented in various lists and
databases. However, there do not exist any appealing visualizations of so far detected exoplanets.
The goal of our project was to nd out whether GANs are able to produce the visuals of imaginative
exoplanets based on real images of the celestial bodies in the solar system. It is to be noted that this
work does not take into account any other features of the celestial bodies of the solar system (e.g.,
temperature, density, etc.). It solely considers images to envision exoplanets that may potentially be
in our universe. Finally, we hope to bridge the intersection between Deep Learning and astronomy.
It is to be noted that the project was nalized in July 2022.

This work makes use of the following methods:

1. The Mix-up preprocessing function to generate a larger dataset,

2. WGAN parts for stable training, and

3. The Structural Similarity Index (SSIM) for an additional loss component.

Generative Adversarial Networks A GAN is a generative Deep Learning model that was intro-
duced by Goodfellow et al. (2014). Specically, it is a type of network that can be utilized to
produce an output that is similar to an existing dataset of, for example, images. A GAN comprises
of a generating sub-model, the generator G, and a discriminating sub-model, the discriminator D. In
every epoch, D is presented with either a real sample stemming from the original data distribution
or with a fake sample stemming from a fake data distribution of the generator. During training,
G seeks to learn the original distribution by receiving feedback for its suggestions in every epoch.
Since there is no intervention by the developers except their inuence on the original dataset, it is an
unsupervised learning task. The learning process can be seen as a zero-sum game as both sub-models
try to converge (Farnia & Ozdaglar, 2020). D attempts to decrease the probability of it rating fake
images as being real. G tries to increase this probability. Feedback is given in the form of gradient
optimization. The Nash equilibrium is reached when D cannot decrease the probability of a fake
image being rated as real and G can no longer increase this probability.

GANs in astronomy Generative networks were rst notably used in the context of astronomy in
the work of Schawinski et al. (2017), who used GANs to recover astrophysical objects such as galaxies
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from random or systematic noise1 due to conventional deconvolution techniques being limited in their
ability to recover features. They trained on 4,500 images of nearby galaxies and used as inputs a set
of image pairs: one high-denition image of a galaxy and an articially degraded image. The GAN
then learned to recover the noisy image. The outputs of the layers were normalized by clipping, a
method usually used in the context of WGAN training, to avoid exploding gradients. The training
time was around 200 hours on an NVIDIA Titan X GPU. The GAN-created images looked very similar
to the original; however, the model was not deployable for generating new images.

Another more recent paper by Coccomini et al. (2021) was successful in generating new images
of celestial objects. The paper used a lightweight GAN, partially due to data limitations, but also
to train for a shorter period of time. The generated images were either 128x128 or 256x256 pixels
in size and included all kinds of celestial objects. The training was done on a single NVIDIA Tesla
T4 GPU and took three days. Notably, besides using the Frechet Inception Distance (FID), widely
used to assess the quality of the GAN output, they also used the Structural Similarity Index (SSIM)
to compare real and generated images. Their model achieved promising results, but due to the
small output size and quality of training images, the generated images were not as sharp and less
realistic-looking than one could hope.

2 Dataset

The images we trained our network with were scraped from dierent sources. With a great collection
of images of celestial bodies of our solar system available on their website, NASA formed the main
source. All les and their respective sources can be found in our Github repository2. We selected
a set of 31 celestial objects that consisted of 13 planets and 18 moons3. We scraped these images
manually from the websites and scaled them for further preprocessing.

Planets and dwarf planets: (1) Ceres, (2) Earth, (3) Eris, (4) Haumea, (5) Jupiter, (6) Makemake,
(7) Mars, (8) Mercury, (9) Neptune, (10) Pluto, (11) Saturn, (12) Uranus, (13) Venus.

Moons: (1) Callisto (moon of Jupiter), (2) Charon (moon of Pluto), (3) Enceladus (moon of
Saturn), (4) Europa (moon of Jupiter), (5) Ganymede (moon of Jupiter), (6) Iapetus (moon of
Saturn), (7) Io (moon of Jupiter), (8) Mimas (moon of Saturn), (9) Miranda (moon of Uranus),
(10) Moon (moon of Earth), (11) Oberon (moon of Uranus), (12) Phobos (moon of Mars), (13)
Rhea (moon of Saturn), (14) Tethys I (moon of Saturn), (15) Titan (moon of Saturn), (16) Titania
(moon of Uranus), (17) Triton (moon of Neptune), (18) Umbriel (moon of Uranus).

1This includes background light, instrument noise, telescope accuracy, etc.
2Please refer to https://github.com/avocardio/ganiverse.
3We purposely selected those moons that gave the base dataset a good variety in terms of colors, surface structures,

craters, etc.
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Figure 1: Left: Jupiter; Middle: Ceres (dwarf planet); Right: resulting Mix-up image

3 Methodology

The following section discusses the methodology used in our work. We rst outline the data prepro-
cessing steps used. Then we describe the model architecture and the training process.

3.1 Data preprocessing

In a recent study by Kamenshchikov and Krauledat (2018) on optimized GAN training, it has been
shown that around 50,000 data points is an ideal dataset size for a classic GAN. According to Karras
et al. (2020), about “105 – 106 images [are] required to train a modern high-quality, high-resolution
GAN”. Arjovsky and Bottou (2017) and Y. Wang et al. (2018) reported that there is a risk of
overtting the discriminator during training when datasets are too small. The discriminator has no
diculty in telling the dierence between real and fake, which results in sparse feedback for the
generator and a collapse and diverge of training. In our work, we started with an initial dataset of
160 images, consisting of 5-6 images per object. We had to rely on data augmentation to stretch
our dataset and overcome the risk mentioned above. All of our data augmentation techniques had
invertible transformations, and although we did not match the suggested 50,000 or 100,000 images,
training with a dataset size of 5,000 images already showed acceptable results. All images are resized
to either 500x500 or 256x256 pixels, normalized, shued, cast to oat32 and batched (batch size of
16).

We utilized conventional data augmentation techniques to add variations of the 160 original
images to our dataset. Our goal was to have a more heterogeneous dataset to map onto the
diversity of exoplanets outside our solar system as suggested by Ballmer and Noack (2021). Given
the almost perfectly round shape of planets and moons (apart from Humea), classic geometrical
operations, such as rotation, ipping top to bottom, and ipping left to right, did not yield much
variety. Our data augmentation pipeline, therefore, included color conversion, blurring, detail lter,
enhancing, and increase of contrast, sharpness and brightness. We allowed the deployment of data
augmentation to change the original data distribution slightly but not dramatically. The reason for
this was to not restrict our view too much to what objects exist within our solar system and, at the
same time, ensure that the generator would still be able to learn the original data distribution. Data
augmentation scaled the dataset by a factor of 10, resulting in 1,600 images.

The Mix-up of images is a data augmentation technique that was introduced by Zhang et al.
(2017) and, inter alia, used by Liu et al. (2022) for their novel ConvNeXt model. The promise and
objective of this technique is to avoid memorization of and sensitivity to adversarial examples, im-
prove generalization, and stabilize GAN training, according to the authors. In Mix-up, two randomly
chosen data samples are blended to construct a new, synthetic data sample. The proportion of each
of the two original images for the new image is given by a probability. Figure 1 shows a Mix-up
example. For our data augmentation, we chose 0.5 in order to have an equal share in the new image.
We ended up with a nal dataset of 5,000 images for training.

4



Cognitive Science Student Journal 2023, 8 Burmester, C. & Kalcher, M.

3.2 Model architecture

Our model architecture is eectively a WGAN from Arjovsky et al. (2017), a simple yet powerful
GAN architecture that uses a gradient penalty, as well as additional modications that we believe
helped to improve training stability. It consists of a generator G and a critic C (instead of the usual
discriminator D). Both G and C are fully convolutional neural networks, except for G’s input layer.

Generator The generator consists of a single, densely packed input layer of size 65,536, which is
reshaped to 16x16x256, followed by 6 up-sampling (deconvolution) layers with batch normalization
(BN) and a LeakyReLU activation each, and by 2 down-sampling (convolution) layers to achieve the
500x500 pixel output images. The dense input layer gets a noise vector z, sampled from a normal
distribution with the dimension dimz = 100. The nal convolutional layer uses a TanH activation, a
stride of one and three 5x5 lters in order to create a 3-channel output image. The TanH activation
ensures the output pixel values range in [−1; 1]. G was initialized with the RMSProp optimizer using
a learning rate of 1e−4 with a decay of 1e−5.

Critic The critic gets a generated image of size 500x500 as an input and uses 5 down-sampling
(convolution) layers with LeakyReLU activations and dropout layers with a drop rate of 01 between
them, followed by a single dense layer with a linear activation. This linearity is used to prevent our
gradients from vanishing, as described in WGAN literature. C was also initialized with the RMSProp
optimizer using a learning rate of 1e−4 with a decay of 1e−5.

Gradient Penalty Gradient penalty is a technique used to train a WGAN to enforce the Lipschitz
constraint and to prevent the critic from becoming too powerful or collapsing. It is based on the
idea that two images that are close in the latent space should be close in the image space, i.e., their
gradients should be close. The objective is to enforce the critic to be locally Lipschitz continuous4,
i.e., to have a gradient norm of 1, using a penalty that is added to the loss function. The gradient
norm is calculated using images x̂ = ϵ ∗ x+ (1− ϵ) ∗ x′, where x and x′ are two real images and ϵ is
the random noise vector sampled from a uniform distribution. The computed gradient penalty value
is then passed on as an addition to the critic loss. Additionally, we manually clip all weights in both
the generator and critic to be between [−05; 05] for each training iteration.

SSIM The Structural Similarity Index is a metric used to compare two images to nd out how
similar they are. It takes into account both the luminance and the structural similarity, i.e., how
similar the two images are in terms of their pixels and their shapes (Z. Wang et al., 2004). This is
important in our case since our objective is to generate images that look “natural”, i.e., that have a
realistic shape. The SSIM outputs a score between 0 and 1, and the higher the score, the more similar
the two images are. We import the metric using the skimage package, created by van der Walt
et al. (2014), but wrap it with a custom function, where a number of previously generated images
are all compared with the current G output, and the mean value taken from all the SSIM scores is
returned:

ssimloss(α β) =
1

|α|

|α|∑

i=1

SSIM(γ γi) ∗ β (1)

where α is the number of previous images, β is an internal scaling factor and γ is either the
current generator output image, or n − α previously generated saved images. The resulting value

4Also locally linear. This type of continuity is important for ensuring that the WGAN training process converges.
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from this function, in the range [0; 1], is added to 1 and then used as a scaling factor for the generator
loss. During training, this loss suppresses mode collapse and encourages more output variability due
to the structural similarity between images after each training step decreasing.

Loss Functions

1. In order to train our generator, we use the mean of our generated images multiplied by our
custom SSIM loss as the objective function:

LG = Ez∼pz(z)[G(z)] ∗ (1 + ssimloss(3 1)) (2)

This means that the SSIM-based loss takes into account the last α = 3 generated images with
a scaling factor of β = 1. In a good training scenario, the rst part of the loss function is just
scaled by 1.

2. For our critic, we use the standard Wasserstein loss, which is the mean absolute dierence
between the generated and the real image samples. We coupled this with 15 times the
gradient penalty value:

LC = Ez∼pz(z)[C(G(z))]− Ex∼pr(x)[C(x)] + (15 ∗GP ) (3)

where GP is the gradient penalty, and pz(z) and pr(x) are the distributions of the random
noise vector and real image samples, respectively.

3.3 Training

Within the training loop, we rst sample a batch (batch size of 16) of noise from a normal distribution
pz(z) with mean 0 and variance 1 and use G to generate images from the noise. C is called with
both real and generated images from the batch. We then calculate the loss for C and G. The total
loss is backpropagated to update the weights of all parameters, which are then clipped to [−05; 05].
For every training iteration, C is called three times and G is called once.

We trained our rst model on 500x500 pixel images for 500 epochs on an NVIDIA RTX 3090
for about 18 hours using the Python library Keras and Tensorow as the backend. For our second
model, we used 256x256 pixel images on the same hardware and conguration. During training,
we saved the G model weights every 50 epochs. After 50 epochs, the generated images began to
show a round structure, and after about 200 epochs, the generated images became visually similar
to real images of planets. We monitored the training in real-time using a custom integration of the
Telegram API in our training loop, which can be found in our repository. After training, we converted
the Tensorow model to TensorowJS for use in our web application.
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4 Results

After training both models, we analyzed the generated imaginary planets. In this section, we discuss
the observed results and examine our model outputs for unwanted artifacts.

4.1 First model

Our rst model had a size of about 4 million parameters. As can be seen in Figure 2, the shape of
the objects was round and started showing realistic-looking results during the later training phase.
Although of ctive nature, familiar structures such as craters or oceans can be spotted in the images.
Each object seemed to have a dierent source of light and coloring.
After training, the generator of the model can be utilized to generate new images by sampling from
a normal distribution pz(z). A few examples of generated images from our web interface can be seen
in Figure 3. The mean of this z-value can be specied to x the sampling process, while the variance
is adjusted to 0.2 for image consistency. It can also be left to the model to set a random value for
z for a completely randomized process and, notably, the best results.

4.2 Second model

Our second and smaller model has about 1.8 million parameters. This model still managed to
contain high output variance and surprisingly less visible artifacts than the rst model. We did
notice, however, that when trying to direct the model by using the normal distribution pz(z) with
a tight variance as described above, the outputs across any mean distribution [0,1] were mostly the
same, with only slight changes in grey and brown coloring. The best results, again, can be seen using
a completely randomized distribution of z. Figure 4 shows examples of the generator output after
training.

4.3 Artifacts

Next to overtting, artifacts are another common GAN problem that can appear as repetitive patterns,
like in some of our cases, or as blurring or other visual defects. Odena et al. (2016) explain this
phenomenon by the fact that the kernel size of a layer is not dividable by its stride, eectively causing
an overlap in pixels in certain parts of the image. This can also occur when using large strides in
the nal generator layers. Although the broader implications are still unclear, gradient artifacts due
to strided convolutions in the discriminator could also be the problem. Even though our generator
upsampling or deconvolution layers use at most strides of two, and our nal layers all have strides of
one, we were still not able to avoid some patterns in our generated images.

5 Conclusion

We conclude that the WGAN architecture we used was able to capture the essence in images of
the real objects, i.e., their shape, lighting and color. Both our models were able to produce photo-
realistic images that are visually appealing and suitable for artistic or other experimental use cases.
For example, they may support communicating and visualizing the research of exoplanets. We noticed
that our improved model was able to train successfully without mode collapse. We believe that the
SSIM-based loss contributed to this result, although we did not compare this custom loss with other
losses. Overall, for our short training time and limited data, the results were very promising. Our
smaller (1.8m parameter) model showed encouraging results despite its size, leading to extremely
fast inference times for the mobile version of the web app.
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Figure 2: 4m generator model outputs in later training phase.

Figure 3: Generator outputs with a xed z-distribution mean; z-means ascending from left to right
(-0.69, -0.18, -0.04, 0, 0.03, 0.14, 0.42)

Figure 4: 1.8m generator model outputs in later training phase.
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Another interesting approach would be to pass smaller generated images through a subsequent
custom-trained up-scaling model, therefore not relying on the generator to generate high-quality
images but to only focus on output variability. As for the model, we would strongly suggest using a
uniform distribution to sample from rather than a normal one. Especially in the context of interactive
sampling, this would lead to a wider and more exible range of xed distribution output images.

By now, other techniques, like diusion models by Ho et al. (2020) and Rombach et al. (2021),
have shown much better results in image synthesis (Dhariwal & Nichol, 2021). With this work, we
intended to show that GANs still have their application for specic use cases. The almost instant
inference time provides the ability to implement such models in apps or website environments. We
believe that the intersection of Deep Learning and astronomy still has a lot to oer and that there
is great potential for further applications within exoplanet research and beyond.
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